
1

Using User Defined FORMATS and the INTNX

Date Function to Extract LAGS and LEADS

Jonas V. Bilenas, Any Bank

PhilaSUG Spring 2019

June 5, 2019

2

Scope of the Presentation.

• I have been using the SAS® PROC FORMAT for decades to create efficient and fast table lookups. A

USER created FORMAT (table lookup) generally uses a binary search method in memory to map

unique keys (VALUES) to labels. Examples:

• Mapping abbreviated codes to code descriptions. The mapping does not have to occur in a data set

and can be applied when using other SAS procedures. For example, generating a report where

medical diagnostic codes are expressed as labels. Saves space and time.

• The format can be used to extract data from very large data set based on account keys. Example;

you have a data set of 30,000 accounts you are doing analysis on. You have a total of 2 billion

transactions and you want to extract only records that match to the sample of 30,000 accounts. The

binary search of the 30,000 records will only require reading, at the worse, 15 records for each of

the 2 billion transaction. Extract the records that match to the modeling data set. No need to sort

the 2 billion records. Note: SQL will often sort both data sets. Max search from the format table

is about 15 records at the worse [log(N)/log(2) + 1]. SQL or DATA merges often take 2 days or

more. The FORMAT run typically takes less than 10 minutes. Similar to the speed of using

HASH joins.

• Adding new variables to a to the larger dataset in question based on segmentation or other keys.

3

A Simple Example of PROC FORMAT

• You can hard code the table look-up using PROC FORMAT. The table look-up is saved in the work

directory and can be applied to other PROCS or DATA STEPS in the code after the FORMAT is

processed.

proc format;

value $sex

'M','m' = 'MALE'

'F','f' = 'FEMALE'

' ' = 'Missing'

'O','o' = 'OTHER'

other = [$2.]

;

value $sex_a

'M','m' = 'MALE'

'F','f' = 'FEMALE'

'O','o' = 'OTHER'

' ' = 'Missing'

other = 'BAD DATA'

;

run;

proc freq data=test;

table sex/missing;

format sex $sex.;

run;

proc freq data=test;

table sex/missing;

format sex $sex_a.;

run;

sex Frequency Percent

Cumulative

Frequency

Cumulative

Percent

Missing 24 5.21 24 5.21

? 55 11.93 79 17.14

FEMALE 87 18.87 166 36.01

MALE 154 33.41 320 69.41

OTHER 70 15.18 390 84.60

x 71 15.40 461 100.00

The FREQ Procedure

sex Frequency Percent

Cumulative

Frequency

Cumulative

Percent

Missing 24 5.21 24 5.21

BAD DATA 126 27.33 150 32.54

FEMALE 87 18.87 237 51.41

MALE 154 33.41 391 84.82

OTHER 70 15.18 461 100.00

The FREQ Procedure

Embedded FORMAT

4

A Simple Example of PROC FORMAT

• This will work as well.

76 proc format;

77 value $sex

78 'M','m' = 'MALE'

79 'F','f' = 'FEMALE'

80 ' ' = 'Missing'

81 'O','o' = 'OTHER’

82 other = [$BEST.]

NOTE: The $BEST (in)format was specified on the right-hand side of an equal sign, but

without a length specification. PROC FORMAT will assume a default length of at least

40 for the format being generated. If this is an insufficient width, you can rerun

PROC FORMAT with an explicit width for the $BEST (in)format, or provide a sufficient

DEFAULT= option.

83 ;

NOTE: Format $SEX has been output.

5

An Example For This Presentation.

• Time series data sources typically have the macroeconomic data (historical actual data

and forecasts into the future) by date. They are typically stored in spreadsheets, SAS

data sets, Oracle, Teradata, DB2, and other locations.

• In modelling, reporting, and/or generating plots we often need to capture information

on macroeconomic data and calculate lags and/or leads of variables at a specific point

in time.

• Using the LAG function in a data step can be problematic. NEVER use the LAG

function conditionally (Y. Tian, 2009).

• Going Forward in time can be an issue as well. There is no LEAD function in the

SAS data step.

• Don’t worry, PROC FORMAT is HERE!

6

Why not use SQL?
• Colleagues tell me they like to use PROC SQL because you don’t have to SORT the

data. Well, you are not coding a PROC SORT in your code but SQL decides how to do

the join. Most of the time the SQL procedure will sort both data set and run times would

be similar to a data step merge.

• You can see how SQL is deciding on the join using the _METHOD SQL option

and code translation papers (Shipp & Laffler, 2013 and Laffler, 2009).

• HASH joins and FORMAT beat out SQL and MERGE statements in data step

(Liang, Q. 2009).

7

Using DATES as a key to map labels that are tied to specific dates.

• The example we will work on here is from sample data from https://datahub.io/collections/economic-data using CPI data

as an example. Monthly CPI data is from 01JAN1913 to 01JAN2014. 1,213 observations loaded to a SAS data set. No

future forecast data provided.

• We don’t want to hard code the FORMAT. We will generate a modified data set that contains the keys (aka values) and

the labels that feed into PROC FROMAT and that FORMAT will be saved in a permanent FORMAT CATALOG.

https://datahub.io/collections/economic-data

8

First 5 Rows of Data; DATE, CPI, INFLATION

1913-01-01 9.8 .

1913-02-01 9.8 0.0

1913-03-01 9.8 0.0

1913-04-01 9.8 0.0

1913-05-01 9.7 -1.02

9

Using DATES as a Value to map labels that are tied to specific dates.

• Data was copied into a DATA step. We used an INFORMAT of ANYDTDTE to read in the date field and to confirm dates were

read correctly. First 10 records were printed to the log, shown below to confirm the DATE variable was read in correctly by

using a date9 FORMAT.

74 data stuff.cpi;

75 input date anydtdte10.
76 index

77 Inflation;

78 if _N_ < 10 then do;

79 put date date9. +5 index +5 inflation ;

80 end;

81 datalines;

01JAN1913 9.8 .

01FEB1913 9.8 0

01MAR1913 9.8 0

01APR1913 9.8 0

01MAY1913 9.7 -1.02

01JUN1913 9.8 1.03

01JUL1913 9.9 1.02

01AUG1913 9.9 0

01SEP1913 10 1.01

INFORMAT

FORMAT

10

Generating the FORMAT CATALOG using PROC FORMAT

• You can hard code the PROC FORMAT in SAS. However for larger format

mappings you can create the format using a special CNTLIN data set.

• The CNTLIN data set must contain at least the following VARIABLES:

• START: name of the key variable. (optional END variable is for formats

using a range of VALUES) We rename the variable DATE as START.

• LABEL: name of the mapping variable. In this example we rename INDEX

variable to variable name LABEL.

• TYPE: ‘N’ for numeric keys, ‘C’ or character keys.

• FMTNAME: name of the FORMAT.

STELF: START, TYPE, END, LABEL, FMTNAME

11

Generating the FORMAT CATALOG using PROC FORMAT

options nocenter fullstimer;

libname stuff ‘/somewhere/FORMATS';

libname library ‘/somewhere/FORMATS';

data fmt / view=fmt;

set stuff.cpi (rename=(date=start

index=label)) end=eof;

retain fmtname 'CPI' type 'N';

output;

if eof then do;

/*start=.*/;

label=.;

HLO='O';
output;

end;

run;

proc format cntlin=fmt library = library

/*fmtlib*/;

run;

NOTE: DATA STEP view saved on file WORK.FMT.

NOTE: A stored DATA STEP view cannot run under a

different operating system.

NOTE: DATA statement used (Total process time):

real time 0.00 seconds

user cpu time 0.00 seconds

system cpu time 0.00 seconds

memory 1053.71k

NOTE: View WORK.FMT.VIEW used (Total process time):

real time 0.02 seconds

user cpu time 0.00 seconds

system cpu time 0.01 seconds

memory 1112.96k

NOTE: PROCEDURE FORMAT used (Total process time):

real time 0.02 seconds

user cpu time 0.01 seconds

system cpu time 0.01 seconds

memory 1112.96k

NOTE: There were 1213 observations read from the

data set STUFF.CPI.

NOTE: There were 1214 observations read from the

data set WORK.FMT.

• Looking at the LOG snippet below we see that it took about a

0.04 seconds to generate the catalog (reading the data and

generating the permanent catalog).

• Future code does not need to generate the catalog again

since the catalog is stored in the library libname.

The code that generated the FORMAT does not need to be
processed in future code unless the FORMAT is updated.

12

Generating the FORMAT CATALOG using PROC FORMAT

options nocenter fullstimer;

libname stuff ‘/somewhere/FORMATS';

libname library ‘/somewhere/FORMATS';

proc format cntlin=fmt library = library;

run;

options nocenter fullstimer;

libname stuff ‘/somewhere/FORMATS';

libname library ‘/somewhere/FORMATS';

proc format cntlin=fmt library = library.test;

run;

• Generates a permanent file in the

LIBNAME library

• First example: formats.sas7bcat

• Second example: test.sas7bcat

• Once the catalog file is created you don’t

need the DATA FMT step nor the PROC

FORMAT step.

• The format catalog can contain more than

1 format.

13

How to use the FORMAT?

• As an example, say you have a data set with monthly dates anchored at the first of each month from 01JAN2000 to

01DEC2012. You want to pull in the CPI for each of the months. Code is shown below. By default, the format search will, by

default look in the WORK directory followed by the LIBRARY directory. You can use a FMTSEARCH option to specify other

CATALOGS to seek the FORMAT or INFORMAT.

options nocenter fullstimer mprint symbolgen;

libname stuff '/somewhere/FORMATS';

libname library '/ somewhere /FORMATS’;

data test2;

set test; /* monthly data from 01JAN2000 to 01DEC2012 */

cpi = input(put(date,CPI.),best.);
Run;

PUT always returns a character variable.

INPUT, in this example, will return a numeric variable.

14

Getting LEADS and LAGS with INTNX date/time DATA funtion

• What if you wanted to also calculate say a 12 month running average and a 48 month running average. You can use LAG

functions in a data step.

• But wait that won’t work since you don’t have the historical months in the data before 01JAN2000.

• Have no fear, we can use the FORMAT CATALOG to pull in the data from the FORMAT table and calculate the running

averages using a macro.

%macro mv_avg (mnths) ;

%let start = 1-&mnths.;

roll&mnths= mean(

%do i = &start %to 0;

input(put(intnx('month',date,&i.),CPI.),best.)
%if &i. ne 0 %then %do;

,

%end;

%end;

)

%mend;

data test2;

set test;

cpi = input(put(date,CPI.),best.);

%mv_avg(12);

%mv_avg(48);

run;

NOTE: There were 156 observations read from the

data set WORK.TEST.

NOTE: The data set WORK.TEST2 has 156

observations and 4 variables.

NOTE: DATA statement used (Total process

time):

real time 0.01 seconds

user cpu time 0.01 seconds

system cpu time 0.00 seconds

memory 1674.87k

See Next Page for Details of the

INTNX Function

15

MORE INFO on INTNX

input(put(intnx('month',date,&i.),CPI.),best.)

• The first argument in INTNX is the interval that you want to move by.

• For date variables, the choices are; DAY, WEEK, WEEKDAY, SEMIMONTH, MONTH, QTR,

SEMIYEAR, YEAR.

• The second argument is the start-from variable, here the variable name is date.

• The 3rd argument is the increment.

• There is a 4th argument.

• By default, the anchor is the 4th argument; B (default) for beginning of the interval, M for middle, E

for END, and S for SAME alignment as the input date.

16

How to use the catalog?

proc sgplot data=test2;

series x=date y=cpi;

series x=date y=roll12;

series x=date y=roll48;

xaxis discreteorder=formatted

grid interval=YEAR;

yaxis grid;

format date year.;

title Cool Graph, No?;

inset "THE POWER OF PROC FORMAT" /

Border position=bottomright;

run;

17

Into the Future and Beyond

data test_leads;

set test2 end=eof;

retain date;

output;

if eof then do inc= 1 to 12; /* ADD 12 MONTHs */

date = intnx('month',date,1);

cpi = input(put(date,CPI.),best.);

roll12=.; roll48=.;

output;

end;

run;

proc sgplot data=test_leads;

where date >= '01JAN2010'd;

series x=date y=cpi;

series x=date y=roll12;

series x=date y=roll48;

REFLINE '01JAN2013'd / axis=x;

xaxis discreteorder=formatted grid interval=MONTH;

yaxis grid;

format date month. /*yymmp7. /*year.*/;

title LEADS;

inset "INTO THE FUTURE" /

Border position=topleft;

run;

18

Into the Future and Beyond

19

Adding more than 1 FORMAT to a FORMAT Catalog

data stuff.cpi;

input date anydtdte10.

index

inflation;

if _N_ < 10 then do;

put date date9. +5 index +5 inflation ;

end;

/*added 4 additional variables to the data set*/

index80 = index*0.8;

index90 = index*0.9;

index110 = index*1.10;

index120 = index*1.20;

verybigindex34567890123456789012 = index*2;

datalines;

1913-01-01 9.8 .

1913-02-01 9.8 0.0

1913-03-01 9.8 0.0

1913-04-01 9.8 0.0

1913-05-01 9.7 -1.02

1913-06-01 9.8 1.03

20

Adding more than 1 FORMAT to a FORMAT Catalog

options nocenter fullstimer fmtsearch=(work library);

libname stuff ‘/somewhere/FORMATS';

libname library ‘/somewhere/FORMATS';

proc contents data=stuff.cpi noprint out=cnts;

run;

proc sql noprint;

select name into: vars separated by ' '

from cnts

where name not in('date' 'inflation’) and type=1

;

quit;

%put vars = &vars.;

NOTE: PROCEDURE CONTENTS used (Total process time):

real time 0.00 seconds

user cpu time 0.00 seconds

system cpu time 0.00 seconds

memory 1192.56k

vars = index index80 index90 index110 index120 verybigindex34567890123456789012

NOTE: PROCEDURE SQL used (Total process time):

real time 0.00 seconds

user cpu time 0.00 seconds

system cpu time 0.00 seconds

memory 5589.09k

21

Adding more than 1 FORMAT to a FORMAT Catalog

%macro multi_fm;

data fmt;

length fmtname $32;

retain type ‘N’;

set stuff.cpi (rename=(date=start)) end=eof;

%let I=1;

%do %until(%scan(&vars,&I.,%str()) = %str());

%let var=%scan(&vars,&I.,%str());
%let v=&var.;

%IF %LENGTH(&v.)>30 %THEN %DO;

%let v=%SUBSTR(&v.,1,30);

fmtname=cats("&v.",'_F');

%END;

%else %DO;

fmtname=cats("&var.",'_F');

%end;

label=&var.;

output;

%let I = %eval(&I. + 1);

%end;

22

Adding more than 1 FORMAT to a FORMAT Catalog

23

Adding more than 1 FORMAT to a FORMAT Catalog

if eof then do

%let i=1;

%do %until(%scan(&vars,&I.,%str()) = %str());

%let var=%scan(&vars,&I.,%str());

%let v=&var.;

%IF %LENGTH(&v.)>30 %THEN %DO;

%let v=%SUBSTR(&v.,1,30);

fmtname=cats("&v.",'_F');

%END;

%else %DO;

fmtname=cats("&var.",'_F');

%end;

/*start=.;*/

label=.;

HLO='O';

output;

%let I = %eval(&I. + 1);

%end;

end;

run;

%mend;

%multi_fm;

NOTE: There were 1213 observations read from the data set STUFF.CPI.

NOTE: The data set WORK.FMT has 7284 observations and 11 variables.

NOTE: DATA statement used (Total process time):

real time 0.00 seconds

user cpu time 0.01 seconds

system cpu time 0.00 seconds

memory 1908.56k

24

Adding more than 1 FORMAT to a FORMAT Catalog

proc sort data=fmt;

by fmtname;

run;

proc format cntlin=fmt library=library.macroeco;

run;

proc catalog c=library.macroeco;

contents;

run;

/*proc format fmtlib library=library.macroeco;

select index_F;

run;*/

NOTE: PROCEDURE SORT used (Total process time):

real time 0.00 seconds

user cpu time 0.01 seconds

system cpu time 0.00 seconds

memory 2300.96k

NOTE: PROCEDURE FORMAT used (Total process time):

real time 0.03 seconds

user cpu time 0.01 seconds

system cpu time 0.00 seconds

memory 1037.87k

NOTE: PROCEDURE CATALOG used (Total process time):

real time 0.02 seconds

user cpu time 0.02 seconds

system cpu time 0.01 seconds

memory 3044.56k

Contents of Catalog LIBRARY.MACROECO

Name Type Create Date Modified Date Description

1 INDEX110_F FORMAT 05/01/2019 17:08:19 05/01/2019 17:08:19

2 INDEX120_F FORMAT 05/01/2019 17:08:19 05/01/2019 17:08:19

3 INDEX80_F FORMAT 05/01/2019 17:08:19 05/01/2019 17:08:19

4 INDEX90_F FORMAT 05/01/2019 17:08:19 05/01/2019 17:08:19

5 INDEX_F FORMAT 05/01/2019 17:08:19 05/01/2019 17:08:19

6 VERYBIGINDEX345678901234567890_F FORMAT 05/01/2019 17:08:19 05/01/2019 17:08:19

References & Recommended Reading
• Bilenas, J.V. “The Power of PROC FORMAT”, SAS Press, 2005. No longer in print.

• Bilenas, J.V., Tahiliani, K. (2016). “The Power of Proc Format, http://analytics.ncsu.edu/sesug/2016/BB-103_Final_PDF.pdf

• Bilenas, J.V., Tahiliani, K. (2019). “The Power of Proc Format, PharmaSUG 2019

• Bilenas, J.V. (2007) “Using SAS® Dates and Times – A Tutorial “, SAS GLOBAL FORUM 2007,

https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/226-2007.pdf

• Carpenter, A. “Looking for a Date? A Tutorial on Using SAS Dates and Times”, SUGI30, 2005.

• Laffler,K.P.(2009) “Exploring the Undocumented PROC SQL _METHOD Option”, SAS GLOBAL FORUM 2009,

http://support.sas.com/resources/papers/proceedings09/063-2009.pdf

• Liang, Q. (2009) “Choosing the Right Technique to Merge Large Data Sets Efficiently”, SAS GLOBAL FORUM 2009,

http://support.sas.com/resources/papers/proceedings09/071-2009.pdf

• Morgan, D. “The Essential Guide to SAS Dates and Times“, SAS Press. 2006

• Shipp, C.E., Laffler K.P. (2013) “Exploring the PROC SQL _METHOD Option”, SAS GLOBAL FORUM 2013,

https://support.sas.com/resources/papers/proceedings13/200-2013.pdf

• Tian, Y. (2009), “LAG - the Very Powerful and Easily Misused SAS® Function”, SAS GLOBAL FORUM 2009,

http://support.sas.com/resources/papers/proceedings09/055-2009.pdf

25

http://analytics.ncsu.edu/sesug/2016/BB-103_Final_PDF.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/226-2007.pdf
http://support.sas.com/resources/papers/proceedings09/063-2009.pdf
http://support.sas.com/resources/papers/proceedings09/071-2009.pdf
https://support.sas.com/resources/papers/proceedings13/200-2013.pdf
http://support.sas.com/resources/papers/proceedings09/055-2009.pdf

26

May the “Power of PROC FORMAT” be with you!

SAS® is a registered trademark of SAS

Institute.

The contents of this paper are the work of the authors and do not

necessarily represent the opinions, recommendations, or practices of

current or previous employers.

